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A powerful technique is described for optimizing electromagnetic
codes that involve the boundary element method and nonlinear
eigenvalue problems. It is specifically adapted to an algorithm that
handles propagation in periodic structures and replaces the stan-
dard determinant search and linear equation solution subroutines,
Through mechanical speedup and improved numerical conver-
gence, the run time for large cases is reduced by an arder of magni-
tude. Details of technique, the elestromagnetic algorithm, and nu-
merical studies are presented. © 1995 Academic Press, Inc.

1. INTRODUCTION

The evaluation of electromagnetic wave propagation in the
presence of conducting structures is often carried out by bound-
ary element methods [1]. One usually wants to evaluate the
dependence of the wave vectors of propagating modes on the
wave frequency and to find the spatial distribution of conductor
current corresponding to these modes. For periodic structures
the computation congists mainly of evaluating the wave-vectors
for which a generalized impedance matrix Z is singular and of
finding the corresponding eigenmodes [2]. Except for very sim-
ple structures, the matrix Z is large and highly ill-conditioned,
so that finding the relevant eigenvalues is a difficult task, setting
severe limitations on the size and complexity of systems which
can be reliably solved.

We propose a new numerical approach which overcomes
these difficulties. Numerical tests carried out show that the
method is both robust and considerably more efficient than

existing techniques. The proposed algorithm is based on the
specific spectral features of the impedance matrix Z and on the
fact that only one or a few eigen-modes are needed. It relies
on a preconditioning transformation [3] of Z inte a matrix
which has the same relevant spectral properties but is much
better conditioned. We then apply a modified Arnoldi method
[4} which focuses on evaluating the few relevant eigenvalues
only, in the most efficient manner.

The paper is organized as follows: Section 2 describes how
the application of boundary element method to the EM wave
propagation leads to an eigenvalue problem for the impedance
matrix. Section 3 discusses the spectral properties of Z, exposes
the difficulties of finding its eigenvalues by standard methods,
and describes the basics of the proposed preconditioning ap-
proach. Section 4 presents a fult description of the precondi-
tioned Arnoldi procedures and their efficient embedding in
Newton iterations for the determination of propagation con-
stants. Section 5 presents numerical examples which compare
the power of the proposed methods with conventional proce-
dures. The paper concludes with a short summary and a sugges-
tion for possible extensions.

2. PROBLEM FORMULATION

The formulation of wave propagation through a structure
will be briefly outlined below. For 2 more complete description
see [2, 51

The geometry of an electronic circuit is defined in a unit cell
©} in R® of dimensions {d,, d,, d.}. The cell is periodically
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extended implying periodic boundary conditions in the x, v
directions, while a radiation boundary condition is imposed
in the z direction. These boundary conditions describe waves
travelling along the periodic structure. )

A part of the unit cell is occupied by conductors, while the
rest of the volume is assumed o have uniform electromagnetic
properties. Let us consider time harmonic currents:

$(x, 1) = J(x)ekr ()
The electromagnetic field £ induced by conductor currents J
is represented by
E=%1J, 2)
where ¥ is an appropriate integral operator. Since Ohm’s law
holds on the conductor surfaces, we have an algebraic con-
straint there,
E,=RJ. 3)
where R is the resistance, and E, is the tangential surface field.

Combining these equations yields

FI=(%,—RJ=0, 4
where £, is the tangential part of £. Guided by Floquet-
Bloch theorems for waves on periodic structures, one looks for
currents J of the form

J=J,e*x, (5)
where J, is periodic in the x, y directions, and k € C? is the

wave vector of a traveling wave. The periodic currents are
spanned by

{Jmnejk'"“.x}e (6)
where the wave vectors are
2mm 2mn
=|—)—k Sy 7
Ko (a’x T z), mn (N

By Maxwell's equations the vertical component k, is deter-
mined by the constraint:

[, + k|l = &% = (/C)~ (8)

The space of currents should be further restricted since J, must

vanish outside the conductors. The space of functions of the

form (5) which vanish outside the conductors will be denoted
as 5i. Let us define an operator
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F(k): Si— Si ©)
as the restriction of % to S;.
To obtain the propagating modes one applies (4) to find
J € 5; such that
F¥(K)J = 0. (10)
A discrete approximation is constructed by the method of mo-
ments described by Spielman and Harmrington [1, 6]. This
method approximates the current J in a finite dimensional space
B of "*basis functions’’ and the field E in a finite dimensional
space T of “‘test functions.”” The resulting discrete version of

(10) reduces to the following:
Find k € C? and J € B such that

J'Qvé(ﬁ)1=0 (11)

for all v & 7. The basis functions in our application are
piecewise linear in the current direction and piecewise constant
in the cross direction (rooftop functions). Testing is done by
line integration. This discretization method.is described in detail
by Rubin [2]. The matrix resulting from {11) will be called Z
in the sequel.

3. THE NONLINEAR EIGENVALUE PROBLEM

The discrete equation (11) has a nontrivial solution only if
the matrix Z is singular. This leads to the nonlinear complex
matrix eigenvalue problem;

|Z(k)| = 0. (12)
The aim is to find a wave vector k for which the boundary
element matrix Z is singular. A common way to solve (12) is
by performing Newton iterations tor zeroing the determinant
1Z(Kk)|. This determinant can be computed by multiplying the
pivots of the LU factors of Z(k). An alternative approach is to
compute the small eigenvalues of the matrix and to construct
a Newton process which drives one of the eigenvalues to zero.
An algorithm which computes part of the spectrum of matrices
of similar kinds by Arnoldi’s method was presented by Natara-
jan 17].

Either of these methods requires at least two matrix factoriza-
tions for each Newton iteration. Considering the cubic complex-
ity of the factorization, these algorithms are extremely time
consuming for nontrivial models.

Besides this high cost, such techniques often encounter nu-
merical problems due to the adverse spectral strocture of the
operator Z, resulting from application of the boundary element
method. Typically, there are a few small eigenvalues of Z(k),
which cross the origin during the evolution in k and hence can
be driven to zero. These are masked by many small eigenvalues
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(of order &%, where & is the operating frequency). About half
of the spectrum is large (of order N?, where N is the number
of grid points in one of the space direciions). Properties of the
spectrum are further discussed below in Section 4.1. The vast
dynamic range of the complex spectrum causes precision 1oss
and results in a small convergence domain of the Newton
process. In other words, a very close starting guess for k is
usuatly required.

In this work we suggest a preconditioned Arnoldi procedure
for finding the eigenvalues of Z which can be zeroed. Instead
of solving (12) we ook for small eigenvalues of the expression
P~'Z(K). It is clear that this new matrix is singular whenever
Z(K) is, and thus, it has the same solution k. We show that an
appropriaie preconditioner P can be found for which the new
spectrum is extremely ““well conditioned.”” This transformation
of the problem results in three important features: (a) only one
matrix factorization is needed, (b) the sensitivity to initial guess
is reduced drastically, (c) several solutions can be found with
a single preconditioner.

3.1. The Eigenvalue Search

The nonlinear matrix eigenvalue problem (11} is solved by

a search for a vector k such that

Aol Z(K)) = 0, (13)
where A, denotes an eigenvalue of Z which is not larger in
magnitude than any other eigenvalue. For our specific applica-
tion it is assumed that the vector k is in the x direction: k=
kxa,. The following method can be applied.

ALGORITHM 3.1.  Newton iterations for A,.

Guess an approximate kx

2. Construct the matrix Z(kx), and find its small eigenval-
ues {A;}

3. Choose a smallest eigenvalue A, and compute its ap-

proximate Jacobian,

P Mx +8) — Ak)

14
dkx A (14
using a sufficiently small increment A.
4. Update kx by Newton's rule:
A
fxt =k — 3 (15)
Ag

5. Repeat from 2 until | Ag| is less than a threshold.

Apart from mathematical subtleties, such as the definition
of A, at the points where eigenvalues cross each other, this
method requires spectral analyses of full matrices, which is
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FIG. 1. The imaginary part of the spectrum of a 84 X 84 model matrix
(the horizontal axis is the index of the eigenvalue).

normally a hard computational task. This step is particularly
difficult due to the spectral structure of the Z matrices occurring
in this application as seen from the following example.

The Z matrices are complex and non-Hermitian. Their eigen-
values may appear in any of the four quadrants of the complex
plane. Figure 1 shows the imaginary part of the spectrum of a
small (84 X 84) example. The real parts, which are not shown,
are much smaller than the corresponding imaginary parts. The
more detailed view of the eigenvalues with positive imaginary
parts is shown in Fig. 2. There is an additional positive point
at 48.7 which is not shown.

The structure of the spectrum which emerges from these
figures thus consists of a group of eigenvalues, with large
negative imaginary parts, and another part of the spectrum,
which contains small eigenvalues with positive imaginary parts.
The two parts are of similar orders.

This partition can be predicted by examining the analytic
form of the operator & in (2) for two-dimensional structures.
In the Fourier coordinates this operator can be written as [5]

Pik) = kl (k31 — Kk"), (16)

where k and k& are defined by (7) and (8). The part &*//k, of
the operator is small and its imaginary part is positive. The
part —kk"/k, is of rank 1 (out of three space dimensions).
Its imaginary part is negative and large, except for the mode
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FIG. 2. The imaginary part of the eigenvalues with a positive imaginary
part of the mode] matrix {expanded detail of Fig. 1).
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corresponding to m = n = 0. This is the only mede which
propagates at low frequency, while other modes may propagate
at higher frequencies. The ill-conditioning between the large
and the small part grows as & approaches zero, namely, at the
quasi static limit,

The key observation for our approach is that, despite the
adverse nature of the eigenvalues, the relative derivatives of
most of them is nearly zero! As we modify the propagation
constant kx, the relative variation of most of the eigenvalues
is very small. Only a handful of them are “*dynamic.”” These
are precisely the ones which we are driving to zero,

It turns out that this property of a nearly stationary spectrum
is very general and robust. For any two parameters kx™', kx®®
which are not “‘too far apart,” the preconditioned matrix

Z = Z(kx™)yZ(kx D) (an
has many eigenvalues which are densely clustered around 1
and a handful of *‘dynamic’ eigenvalues. These dynamic cnes
are the values which may cross the origin. Observe that Z is
singular whenever Z(kx"} is singular, provided that Z(kx®) is
regular. This implies that a parameter kx for which Z is singular
also solves the original problem (13).

4. THE PROPOSED ALGORITHMS

Small and isolated parts of a matrix spectrum, such as the
ones which have been described, are ideally suited for Arnoldi’s
method. The convergence of this algorithm was studied by
Saad [§].

ALGorITHM 4.1. A preconditioned Arnoldi’s procedure.

1. For an initial guess kx get a “‘nearby’’ number kx".
{See the discussion below.)
Compute the matrix Z{kx?) and its inverse.

Choose a normalized vector u,, and construct an ortho-
normal basis to the Krylov subspace generated by the
matrix Z{kx®) ' Z(kx):

* fori = 1tomdo

tvi = Z(kx(z’)‘_]_Z](kx)ui_l
LU TR Sl FO(Vi, u;
* = uf(, o)

4. Form the matrix:

B = U*Z{kx¥y'Z(kx)U, (18)

where {u}7 constitute the columns of /.

5. Compute the eigenvalues of B. The values which are
not near | approximate the isolated eigenvalues of
Z(kx"®y ' Z(kx).

6. Compute the approximate eigenvectors by noting that
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FIG. 3. The eigenvalues of the model matrix at kx = 1,14, preconditioned
by the matrix at kx = 1.2k

they are columns of the matrix UM, where M stands for
the matrix whose columns are the eigenvectors of B.

Remarks. * The parameter kx® should be sufficiently close
to kx, but the small eigenvalues of Z{(kx'*) should be apart
from the origin. It is not hard to satisfy these requirements by
exploiting the physical meaning of the solution, which requires
that it does not have a negative imaginary part (this would
correspond to a ‘‘negative attenuation’’). The insensitivity of
the algorithm to the choice of kx* is a central factor in its ro-
bustness.

* The orthogonalization step (which is sometimes called
modified Gram—Schmidt) is unnecessary in precise arithmetic.
However, it is quite essential for numerical stability.

* The algorithm is insensitive to the choice of the initial
vector u,. Strictly speaking, it must have nonzero components
in the directions of the main eigenvectors. In practice, such
compohents arise from numerical noise during the construction.
We choose u, to be the index set {1, 2, ..., n}.

* The accuracy of the approximate eigenvalue and the corre-
sponding eigenvector is relative to the separation between the
eigenvalues. We found that the choice m = 10 is adequate.

* The cost of the algorithm is expressed by the formula:

C =41 + 2mn® + 0.5m’n + m* + nm?, (19
where » is the order of Z, and m is the number of Arnoldi
iterations. The first term corresponds to the cost of the LU
factorization of Z(kx®). The second term represents the cost
of a matrix multiplication and backward forward substitution,
which are performed during each iteration. The third term is
the cost of the orthogonalization. The fourth is the cost of
computing the eigenstructure of the matrix B, and the last term
represents the eigenvector computation (step 6). Therefore the
cost for large matrices is ~gn® + 2mn?

Due to the robustness of this algorithm with respect to the
preconditioning point kx@, it is possible to use a common
preconditioning matrix Z(kx*)™! for a whole Newton process.
This results in the following method.
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AvrcorituM 4,2, Newton—Amoldi iterations for Apy,.

Guess an approximate kx, and its perturbation kx*¥
2. Compute the matrix Z(kx™), and its inverse.

Compute the isolated eigenvalues of the matrix
Z(kx®)y~1Z{kx) by the preconditioned Arnoldi’s method
using Algorithm 4.1.

4, Choose one of the smallest eigenvalues Aq(kx).

5. Repeat steps 3 and 4 at a neighboring point to find
Aglkx + A).

6. Compute the numerical derivative A of Aqg

Aglkx + A) — Ay(kx)

Aq(kx) = A (20)
7. Update kx by Newton’s rule:
Aglkx ")
F e e — VM
kx*t = kx Aol ) 21)

8. Repeat from 2 until |Ag| is less than a threshold.

Remarks. + Instead of selecting a smallest eigenvalue, one
may choose the eigenvalue with a minimal Newton update
[ As/Aq|.

* The cost of the method is

C=14nr* + 2+ DNChpgen + dimn? + o(n?), (22)
where / is the number of required Newton iterations, and Coyygen
is the amount of computation required for constructing Z.

Note that the »° term in (22) is not multiplied by I This
means that the average cost of an iteration decreases as we
keep using the same preconditioner. This fact is further ex-
ploited when several solutions are needed.

4.1. Multiple Solutions

The nonlinear eigenvalue problem usually has more than a
single solution. Once the first solution we deal with is found,
it is possible to start new Newton processes {or other eigenval-
ues. It turns out that a single preconditioning matrix is often
suitable for a whole group of solutions. In order to prevent the
Algorithm 4.2 from converging back to the previous solutions, it
is necessary to orthogonalize the Krylov subspaces constructed
during the preconditioned Arnoldi iterations, with respect to
the previously found left eigenvectors. The restriction of the
search space to a subspace is sometimes called a ‘‘deflation”
of the space,

Due to the nonlinearity of Z(kx), the left eigenvectors at
a spectfic kx are not biorthogonal with respect to the right
eigenvectors at kx + £. Only approximate orthogonality exists
for a small . The deflation is thus merely a way to avoid the
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FIG. 4. The geometry of EXL. The unit celt is shaded.

“attraction’” of the previous solution. Once we arrive at a
neighborhood of a new desired solution, the deflation shouid
be stopped.

The following algorithm computes a sequence of kx solutions
and the corresponding eigenvectors.

ALGORITHM 4.3,
solutions.

Newton—-Arnoldi iterations for multiple

Guess an approximate kx, and its perturbation kx®

Compute the matrix Z(kx®), and its inverse,
Fori= 1,2, .. [do:

* Set a logical flag D = True, and a threshold T.

* Perform an iteration of alg. 4.2. If D = True, then
orthogonalize the Arnoldi vectors {u;} with respect to
the previously found solution vectors, before comput-
ing the eigenvalues of the Arnoldi matrix B.

* If the eigenvalue is smaller than 7 then set D = False.

* Repeat from step 2 till convergence is reached.

Remarks. = As mentioned in the remarks following Algo-
rithm 4.2, the average cost of an iteration decreases as the
preconditioner is used several times. While a direct eigenvalue
computation requires Q(n*) operations for each matrix, our
method needs a single LU factorization for the entire multiple
solution search.

* The LU factors may be used for a whole sequence of
neighboring problems. For example, if the frequency depen-
dence on kx is required, then a single factorization is wsually
sufficient for a whole sequence of frequency points.

5. EXAMPLES

The algorithms presented here were compared to a more
conventional method of applying Newton iterations to the deter-
minant. This method will be denoted as ‘‘determinant itera-
tions™’.

Figure 4 shows a simplified version of a signal-line structure
used in some circuit boards and computer modules. A signal line
is situated above a ground reference plane that is periodically
perforated with apertures so that it becomes a mesh plane; the
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TABLE 1 2 . T T T T T ; .
. real part ©—
Timing of EX1 with Various Discretization Grids imag. part 4— b
1.5 0.0001 x aks. derivative S
Det. iter. Algorithm 4.2 C
Degrees —_— i A
of Solution Solution
Grid freedom lterations time Iterations nme
4X4AX6 84 3 024 3 014 0.5 7
B X8 X6 256 4 5.23 3 2.19 )
8% 16 X 6 456 4 27.91 3 7.05 i
12X 12 %3 516 4 4045 3 .86 0 —v —-,/"'}"‘—--.;..—’ T f
12X 16 X 6 660 6 126.08 3 17.50 L : L L 1 L 1 -
1 2 3 4 5 ] 7 8 9 10

apertures allow for vertical interconnections. The solution is
nearly TEM, except for the perturbations introduced by the
apertures; the propagation constant kx, normalized to that of a
TEM wave, is expected to be just above unity. One unit cell
1s shaded in the figure. The horizontal dimensions of the unit
cell are 1 by 1 mm, and spacing between the mesh plane and
the plane of the signal lines is 0.6 mm, This structure was
modelled at a frequency of 0.4774 GHz. This structure is de-
noted as EX1.

Table I and Fig. 5 show the computing time required to reach
convergence of the Newton iterations with different levels of
discretization. These results represent the net solution time,
while the time needed for the generation of the impedance
matrices is ignored. The matrix generation code has been opti-
mized by a table lookup organization, and by using FFT, so
that the run time for large cases is governed by determinant
computations, or by the Arnoldi iterations. Timing was done
on an IBM RS/6000 workstation model 550.

The asymptotic complexity of both algorithms depends on
the number of LU factorizations performed, since this is the
only computation which has a cubic cost. Therefore, we expect
the preconditioned algorithm to be faster than the determinant
iterations by roughly twice the number of Newton iterations
performed (the old method requires two matrix factorizations
per iteration). In addition to this factor, Table | shows that the
new method is more robust with respect to grid refinement.
The number of iterations of the determinant method increases

index of Arnoldi value

FI1G. 6. The cigenvalues of EX1 computed by Alzonithm 4.2 at &, = 1.05%.

when the grid is refined, while the number of iterations needed
by Algorithm 4.2 stays fixed. The solution time columns in
Table [ represent iteration times, excluding matrix generation
time.

The actual structure of the eigenvalues computed by Algo-
rithm 4.2 is shown in Fig. 6. This computation was done at
the point k, = 1.05k, while the solution is at &, = 1.0367k.
The significant features of the eigenvalue structure can be ob-
served in this figure:

1. All of the eigenvalues, except for two small ones and
two large ones are densely clustered around k. /k = 1, Taking
more Krylov vectors in the Amoldi method would result in
more and more eigenvalues in this cluster.

2. The imaginary part of the eigenvalues are small com-
pared to the real part.

3. The smaller eigenvalues have a large derivative, com-
pared with the rest of them.

4. The facts stated above lead to Newton updates which
are much smaller for the first two eigenvalues than for the rest
of them.

The second example consists of a signal-line sandwiched be-
tween two continuous ground planes, with a periodic array of
orthogonal, non-touching signal lines running between the sig-

200 T T T T T T T T
180 - determimant itcr]atiin; ©— . . : i . :
L alg. 4.2 +—" | 14 | . . -
160 determinant iterations <—
140 | - 12
i 120 T number ig
time 100 F _ of
{sec) jter- 8
80 [ N ations 5
60 [ 7]
4 4 4
pdi N o 1 2
o o : M_._ . 1 11 12 13 .11.4 1.5 1.6 L7 1.8
D 100 200 300 400 500 600 700 800 900 initial guess
degrees of freedom
FIG. 7. Convergence region of the lossy structure (second example). A
FIG. 5. Solution time for EX1, various discretizations. comparison of two algorithms.
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FIG. 8. Solutions of the waveguide example.

nal line and one of the ground planes, The conductors are lossy
and, at the frequency of interest, significant dispersion exists.

Figure 7 shows a comparison of the number of iterations
needed by determinant iterations and by Algorithm 4.2. The
robustness of the preconditioned Arnoldi method with respect
to the initial guess is seen clearly.

A third configuration is a rectangular dielectric waveguide
with a periodic array of square holes, already considered in the
literature [9]. (The electromagnetic algorithm also applies to
dielectric structures by representing the polarization cufrent
through appropriate basis functions.) When it is solved by deter-
minant iterations the numerical procedure faces difficulties
around 24 GHz frequency.

Applying Algorithm 4.3 one immediately discovers that there
are two solution branches, which c¢ross near 24.1 GHz. This
bifurcation point is the source of the numerical difficulties.
The preconditioned eigenvalue analysis easily discovers all the
“mobil’’ cigenvalues, which lead to potential solutions, This
information is lacking in the determinant method. The two
solution branches ae shown in Fig. 8.

The fourth structure is a section of a connector used to
interconnect circuit boards in a computer [10]. Two outer
ground pins are tied to a rectangular conducting bar with three
signal pins in center. (These pins give rise to three low order
modes). The structure is shown in Fig, 9,

FIG. 9. A connector structure. The three inner pins are signal pins, and
the two outer ones are ground pins. The shaded rectangle is a conducting bar.
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TABLE 11

Number of Hterations Required by Two Algorithms for Convergence
to Three Solutions of Connector Example (Signifies No Convergence)

Algorithm 4.3 Det. iter.
Initial guess 1.12 1.13 1.41 1.12 1.13 1.41
1.02 — — — — — —
1.07 4 3 — 7 — —
1.10 6 — —
1.12 4 — —
£.124 4 — —
1.128 — — —
1.25 3 4 — 3 —
1.35 6 3 4
1.39 — — 5
1.414 — — 3
142 G 4 3 — — 3
1.44 —_ — 5
1.50 9 6 4 — — 6
L.60 9 6 4 e — 7
1.70 9 6 4 — 8
2.00 — — 5 — 9

The number of iterations for this example, as solved by
determinant iterations and by Algorithm 4.3 are shown in Fig,
11. This structure has 2160 degrees of freedom. The solutions
are located roughly at 1.12, 1.13, 1.41. The determinant method
converges slowly if the initial guess is not very close. The new
method is far more forgiving with respect to inaccurate guesses.
For a large interval of guesses all three solutions can be reached
by a common preconditioner, Initial guesses which are below
1.3 and above 1.07 will trap the two lower solutions with a
single preconditioner, but a higher starting point will be required
for the solution at 1.41. The domains of convergence for the
three solutions, when solved by Algorithm 4.3 are listed in
Table 1T and displayed in Fig. 10.

Even when the initial guess is close enough for the determi-
nant method, the new method is still much faster. We timed
these solutions for very close guesses on an IBM 3090 computer
with a vector facility. The total time required for the new

T T T T T
convergence to 1,12 solution -©—
convergence to 1.13 solution =
convergence to 1,41 solution =

iterations <>
L
T

!
>
1+ <&

p+
(1]

!
T
[
=7

—_l 1 1 1 )

i 1.2 1.4 1.6 1.8 2
initial guess

FIG, 10, Domain of convergence for connector example, using Algorithm
4.3. The x axis is the initial guess for &x. The marked points are successful runs.
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i4 T T T T T T T T T

det. iterations <~ |
alg. 4.3 4+

1.2 13 14 15 16 1.7

propagation parameter

18 19 .2

FIG. 11.
Algorithm 4.3 is compared with the determinant method (det. iterations actually
diverge at 1.128).

Number of iterations needed for sclution of connector example.

algorithm is 1246 s. The same solutions consumed 6240 s when
solved by determinant iterations.

6. CONCLUSION

A new algorithm for reducing the run time in a certain
class of electromagnetic code has been described and compared
against a standard technique. Results calculated here, and from
numerous other examples not shown, confirm both the speedup
and improved convergence. Most importantly, the new tech-
nique works for every structure in the class. An important
challenge for future work is the total elimination of the cubic
complexity by alternative preconditioning techniques.

The methods described here may be extended to electromag-

EFRAT ET AL.

netic reflection problems, where there is a need to solve linear
systems, rather than nonlinear eigenvalue problems.
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